

CORE JAVA 25 PROGRAMMING
DEVELOPER'S WORKSHOP (TT2100)
Course Code: 101020

Get hands-on with modern Java to build scalable apps, boost
performance, streamline workflows, and create enterprise-ready solutions

Throughout this five-day, hands-on Java training course, students learn the best
practices for writing great object-oriented programs in Java 25, using sound
development techniques, modern features for improved performance, and new
capabilities that accelerate rapid application development.

This course explores key enhancements introduced since Java 11, including Records,
Sealed Classes, Text Blocks, Pattern Matching, Virtual Threads, and numerous API
updates. In addition, Java 25 continues the trend of simplifying the language for
newcomers by providing streamlined syntax, enhanced pattern matching, and a
more approachable set of defaults that make it easier for developers new to Java to
quickly write correct, readable, and efficient code without getting bogged down in
boilerplate.

With Java 25, learning the language as a beginner has become more approachable
than ever. New features such as Compact Source Files and Instance Main Methods
allow students to create and run small programs with minimal setup, eliminating
much of the boilerplate code that used to overwhelm newcomers. Flexible
Constructor Bodies simplify class creation by reducing strict syntax requirements,
making it easier to focus on concepts instead of technical hurdles. Additionally,
Pattern Matching for Primitives streamlines common coding tasks by replacing
verbose casting with more natural and readable code. These improvements reflect
Javaâ€™s ongoing effort to lower the learning curve, helping new developers get
started faster while still building a foundation that is compatible with professional
software development practices.

Developers leaving this course will be well-prepared to work on Java 8, Java 11, Java
17, and Java 21 projects, while also being ready to contribute effectively to modern
projects using Java 25.

What You'll Learn

This skills-centric course is about 50% hands-on lab and 50% lecture , designed to
train attendees in basic OO coding and Java development skills, coupling the most
current, effective techniques with the soundest industry practices. Throughout the
course students will be led through a series of progressively advanced topics, where

each topic consists of lecture, group discussion, comprehensive hands-on lab
exercises, and lab review.

Our engaging instructors and mentors are highly experienced practitioners who
bring years of current " on-the-job " experience into every classroom. Working in a
hands-on learning environment, guided by our expert team, attendees will learn to:

• Understand what object-oriented (OO) programming is and recognize the
advantages it provides in today's software development world.

• Gain a solid grasp of the fundamentals of the Java language, including its
importance, uses, strengths, and limitations.

• Connect the basics of the Java language to OO programming and the Java
Object Model.

• Learn to use Java's exception handling features to build more reliable
applications.

• Work with the Java Modular System (Project Jigsaw) to create organized,
maintainable applications.

• Design and implement classes that demonstrate inheritance and
polymorphism.

• Use collections, generics, autoboxing, and enumerations to efficiently manage
data.

• Process large volumes of data using lambda expressions and the Stream API.
• Define and implement abstract, static, and private methods in interfaces.
• Take advantage of Java development tooling available in modern

programming environments.
• Write modern Java code using switch expressions for more concise and

expressive branching logic.
• Use text blocks to create clean, multi-line string literals.
• Apply pattern matching for instanceof to write safer and more readable type

checks.
• Introduce records as immutable data carriers to simplify domain models.
• Use pattern matching in switch statements to simplify conditional logic.
• Apply record patterns to deconstruct and access data directly within records.

Specific Java 25 features that are covered in the course include:
• Learn how to use primitive types in patterns, allowing pattern matching to work

directly with primitive values for safer and more concise code.
• Understand module import declarations, which simplify modular programming

by making module dependencies clearer and easier to manage.
• Explore flexible constructor bodies, which give developers greater control over

how constructors are structured and how initialization logic is handled.
• Practice writing compact source files and instance main methods, which reduce

boilerplate and make it easier for beginners to create simple Java applications.

Who Needs to Attend

This is a foundational Java programming course designed for attendees who
already have prior development experience in another programming language.

Participants should be familiar with basic programming concepts such as variables,
control structures, functions/methods, and data structures.

Prerequisites

Participants should be familiar with basic programming concepts such as variables,
control structures, functions/methods, and data structures.

CORE JAVA 25 PROGRAMMING
DEVELOPER'S WORKSHOP (TT2100)
Course Code: 101020

CLASSROOM LIVE $2,695 USD 5 Day

Classroom Live Outline

1) The Java Platform

Java stands out in the software world not only as a programming language but also
as an adaptable platform. Understanding Java means exploring its broader
ecosystem: from the Standard Edition (SE) used for everyday applications, to the
Enterprise tailored for large-scale systems. You will see how Java’s design enables
code to run on many devices and operating systems without changes, thanks to the
Java Virtual Machine (JVM). You’ll also get to know the essential tools provided in
the Java Development Kit (JDK), which make building, debugging, and
documenting Java applications possible. This lesson explains the step-by-step
process of transforming Java code into running applications, the automatic memory
management through garbage collection, and the dynamic runtime features that
keep Java secure and efficient. Gaining these insights will equip you to understand
why Java is trusted for everything from desktop software to smart devices and
enterprise solutions.

• Introduce the Java Platform
• Explore the Java Standard Edition
• Discuss the lifecycle of a Java Program
• Explain the responsibilities of the JVM
• Executing Java programs
• Garbage Collection

2) Using the JDK

Understanding how Java organizes code and documentation is essential for
creating reliable and maintainable applications. You will explore the structure of the
Java Development Kit (JDK) and the importance of tools and APIs that support
your work. Learning how to use packages, JARs, and modules will help you keep
your projects organized and scalable. You will also see how to set up your Windows
environment for Java development, ensuring all necessary commands and libraries
are within reach. The lesson guides you through the process of compiling and

running Java programs, clarifying file naming rules and output directories. You will
discover how documentation, especially with Javadoc, supports code reuse and
collaboration by making your codebase easier to understand and maintain.

• Explain the JDK’s file structure
• Use the command line compiler to compile a Java class
• Use the command line Java interpreter to run a Java application class
• Documentation and Code Reuse

3) Using the IntelliJ IDE

IntelliJ IDEA is a powerful tool designed to make your software development
workflow more efficient and enjoyable. As you use IntelliJ, you’ll notice how it
integrates a wide range of development tasks into one cohesive environment, from
writing code and managing resources to compiling, running, and debugging your
applications. The platform’s advanced features, such as intelligent code assistance,
robust project organization, and deep integration with build tools, version control
systems, and databases, are aimed at streamlining your work and reducing
repetitive tasks.

Understanding how IntelliJ organizes projects, modules, libraries, and facets will
help you keep your projects tidy and scalable. You will also see how features like
wizards, templates, and instant code suggestions can speed up your coding and
help maintain high standards of code quality. The environment offers flexible ways
to view and manage your codebase, as well as tools for customizing coding styles
and navigating large projects with ease. By mastering these foundational aspects of
IntelliJ, you set yourself up for more productive, reliable, and maintainable
development work.

• Introduce the IntelliJ IDE
• The Basics of the IntelliJ interface
• IntelliJ Projects and Modules
• Creating and running Java applications
• Tutorial: Working with IntelliJ 2025 (Community Edition)

4) Writing a Simple Class

Java programming centers around the concept of classes, which organize both data
and functionality in a unified structure. By understanding how classes act as
templates, you can efficiently define the properties and behaviors that objects will
possess. This lesson explains the difference between fields and methods, clarifies
how to create and initialize objects, and explores how access modifiers influence the
visibility of different components in your code. You will also encounter the
distinction between primitive types and object references, learn how to use the dot
operator for interacting with objects, and discover the methods for displaying
output to the console. Additionally, it is essential to be aware of Java’s reserved
words and keywords to avoid naming conflicts and maintain clear, error-free code.

• Write a Java class that does not explicitly extend another class
• Define instance variables for a Java class
• Create object instances

• Primitives vs Object References
• Implement a main method to create an instance of the defined class
• Java keywords and reserved words

5) Adding Methods to the Class

In this lesson, you will explore how Java harnesses the power of methods to define
object behavior and manage data. You’ll learn the essential structure of a method,
including how modifiers, return types, parameters, and the method body come
together to perform specific actions on objects. As you move forward, you’ll see
how parameters act as inputs, allowing methods to process information
dynamically. You’ll also discover how the `this` keyword helps manage variable
naming conflicts and how Java uses accessors and mutators to control data access
and modification, reinforcing the principles of encapsulation. The lesson covers the
distinctions between overloaded and overridden methods, providing insights into
how Java supports flexible and maintainable code. You’ll dig into constructors,
special methods that initialize objects—and see how their proper use ensures robust
object creation. Finally, you’ll learn about Java annotations, which add metadata to
your code, and how to indicate deprecated features to guide future development.

• Write a class with accessor methods to read and write instance variables
• Write a constructor to initialize an instance with data
• Write a constructor that calls other constructors of the class to benefit from

code reuse
• Use the this keyword to distinguish local variables from instance variables
• Introducing annotations
• Deprecating classes and methods

6) Object-Oriented Programming

Object-oriented programming models software around real-world concepts,
allowing you to create programs that are flexible, scalable, and easy to maintain. In
this lesson, you will explore how objects encapsulate both state (data) and behavior
(operations), and how classes provide the templates for these objects. By
examining features such as interfaces, encapsulation, inheritance, and
polymorphism, you will see how code can evolve and adapt to change with minimal
disruption. You'll also learn how objects relate to each other, mirroring complex
relationships found in real systems. Through practical examples, such as designing a
television or managing vehicles, you'll gain insight into how abstraction and object
relationships form the backbone of robust software solutions.

• Real-World Objects
• Classes and Objects
• Object Behavior
• Methods and Messages

7) Language Statements

Operators and control statements are at the heart of Java programming, providing
the tools you need to manipulate data, make decisions, and repeat actions. This

lesson explores a wide array of operators, from basic arithmetic to more advanced
bitwise and logical operations, equipping you to write concise and effective code.
You'll encounter shorthand ways to update variables, learn how comparison and
logical operators drive decisions, and see how the ternary operator streamlines
conditional assignments. The lesson also delves into looping constructs, including
for, while, and do-while loops, as well as the mechanisms to control flow within
these loops. To tackle complex branching, you'll discover how both traditional
switch statements and modern switch expressions can simplify your code, allowing
for clear and maintainable multi-path logic. By mastering these constructs, you
strengthen your ability to craft robust, flexible, and efficient Java programs.

• Arithmetic operators
• Operators to increment and decrement numbers
• Comparison operators
• Logical operators
• Return type of comparison and logical operators
• Use for loops
• Switch Expressions
• Switch Expressions and yield

8) Using Strings and Text Blocks

Understanding how Java manages and manipulates strings is vital for efficient and
robust programming. Strings play a fundamental role in handling text data, and Java
offers a range of tools and classes to make string processing both powerful and
straightforward. You will explore how strings are stored, how immutability impacts
performance and behavior, and the various methods that allow for comparison,
modification, and formatting. The lesson covers practical classes like StringBuffer
and StringBuilder, which help with mutable strings, and introduces newer features
like StringJoiner and text blocks for more readable and manageable code.
Important distinctions in string comparison and whitespace management will also
be addressed. Additionally, you will see how Java has evolved to optimize memory
usage for strings and how its Unicode support keeps pace with the world’s
languages and symbols. With these concepts, you will be prepared to write clear,
efficient, and modern Java code that handles text seamlessly.

• Create an instance of the String class
• Test if two strings are equal
• Perform a case-insensitive equality test
• Contrast String, StringBuffer, and StringBuilder
• Compact Strings
• Text Blocks
• Unicode support

9) Fields and Variables

Understanding how variables operate in Java is crucial for writing reliable and
maintainable code. You’ll explore the specific roles that fields, local variables, and
instance variables play within classes and methods. By examining Java’s data types,

you’ll see how primitive values, object references, and arrays are stored and
manipulated. The lesson covers how variables are initialized, why block scoping
matters, and how naming conflicts are resolved using the `this` keyword. You’ll also
learn about Java’s type inference capabilities using `var`, including best practices
and limitations. Finally, you’ll gain insight into the importance of static and final
variables, and how static methods are used to provide utility functions without
requiring object creation. Each concept builds a foundation for writing robust, clear,
and efficient Java programs.

• Discuss Block Scoping Rules
• Distinguish between instance variables and method variables within a method
• Explain the difference between the terms field and variable
• List the default values for instance variables
• Final and Static fields and methods

10) Specializing in a Subclass

Inheritance is a cornerstone of object-oriented programming in Java. By extending
a class, you can build on existing functionality, reducing repetition and making your
code easier to maintain. You’ll see how to use the `extends` keyword to create
subclasses that inherit data and behaviors from superclasses, and how to customize
these behaviors by overriding methods. This lesson also covers how Java handles
object references through upcasting and downcasting, and how type checking with
`instanceof` and pattern matching can make your code safer and clearer. Since
every class in Java is ultimately derived from the Object class, you’ll learn the
importance of overriding its fundamental methods for equality, string
representation, and hashing. Constructor chaining and the correct use of
constructors are also explored to ensure that objects are initialized properly in
complex class hierarchies. By mastering these concepts, you’ll gain the tools needed
to structure robust, flexible, and maintainable Java applications.

• Constructing a class that extends another class
• Implementing equals and toString
• Writing constructors that pass initialization data to parent constructor
• Using instanceof to verify type of an object reference
• Overriding subclass methods
• Pattern matching for instanceof
• Safely casting references to a more refined type

11) Using Arrays

Arrays in Java offer a way to organize and manage a collection of data items
efficiently. By understanding how arrays work, you can create structures that hold
fixed sequences of elements, all sharing the same data type. This lesson covers how
to declare and allocate arrays, fill them with data, and access individual elements
using index positions. You will also see how multidimensional arrays can be set up
to represent more complex data arrangements. Managing array data often involves
copying or expanding arrays, and you’ll learn how Java’s built-in methods
streamline these tasks. Methods sometimes need to accept a flexible number of

inputs, and arrays are key to supporting this, both through manual approaches and
the use of Java’s varargs feature. Key rules, such as array bounds and argument
placement, are highlighted to help you avoid common errors and write robust,
adaptable code.

• Declaring an array reference
• Allocating an array
• Initializing the entries in an array
• Writing methods with a variable number of arguments

12) Records

In this lesson, you will explore how Java models data using both traditional data
objects and the newer record feature. You’ll begin by examining the standard
patterns and code requirements for creating data objects, including constructors,
getters, and essential methods like `equals`, `hashCode`, and `toString`. As you
progress, you’ll see how modern IDEs can automate much of this task but still
require careful management to avoid errors.

The lesson then introduces Java records, a powerful feature designed to simplify
the creation of immutable data classes. You’ll learn how records automatically
generate much of the necessary code, their structure, and how to define them
efficiently. By working with canonical, alternative, and compact constructors, you’ll
uncover ways to validate and initialize record data. Additionally, you’ll see how
records can be extended with custom and static methods, while remaining
immutable and concise. Finally, you’ll examine how generic records increase
flexibility and reusability in your code, enabling you to create versatile data
containers with type safety.

• Data objects in Java
• Introduce records as carrier of immutable data
• Defining records
• The Canonical constructor
• Compact constructors

13) Java Packages and Visibility
When programming in Java, organizing your code is essential for building scalable
and maintainable software. You will encounter situations where the same class
name can mean very different things in different contexts, leading to potential
conflicts and confusion. Java provides powerful tools to address these issues,
including packages, access modifiers, and modules. Packages help you logically
group related classes, avoid naming clashes, and maintain a tidy project structure.
Access modifiers control what parts of your code can interact with each other,
helping secure sensitive data and internal logic. As your projects grow, Java’s
modular system allows you to bundle groups of packages together, control what
gets shared, and manage dependencies efficiently. Throughout this lesson, you will
see how these features work together to produce organized, clear, and professional
Java code. Following naming conventions will also improve code readability and
collaboration across teams.

• Use the package keyword to define a class within a specific package
• Discuss levels of accessibility/visibility
• Using the import keyword to declare references to classes in a specific

package
• Using the standard type naming conventions
• Introduce the Java Modular System
• Visibility in the Java Modular System

14) Running Java applications

Java 25 brings a fresh approach that makes it easier than ever to start
programming, whether you are brand new or already have experience. In the past,
setting up your first Java program often meant wrestling with lots of structure and
rules before you could even see anything happen on screen. Now, you can focus on
the most important part, what your code does, rather than how to organize it. With
Java 25, you can write and run programs using just a single file, skipping folders and
complex project setups. The language now supports a scripting-like style, letting
you try out ideas and get results right away. Features like implicit classes, simplified
main methods, and the new IO class for input and output all work together to help
you learn and experiment with less effort. You will also see how Java now lets you
run source files directly, compile code on the fly, and handle input and output in a
much simpler way. These improvements are designed to make Java more
approachable and efficient, so you can spend more time creating and less time
setting things up.

• Identify key simplifications introduced in Java 25 for getting started with
programming.

• Describe the use and benefits of implicit classes in Java 25.
• Demonstrate how to run Java source files directly without manual compilation.
• Explain the lazy compilation and execution process in Java 25.
• Write main methods using the simplified syntax options introduced in Java 25.
• Recognize how Java determines the entry point when multiple main methods

exist.
• Use the new IO class to print output and read input in Java 25 programs.

15) Utility Classes

Understanding how Java manages basic data types, dates, and formatted strings is
crucial for building efficient and reliable applications. Wrapper classes make it
possible to treat primitive values as objects, which is essential when working with
libraries or APIs that require objects. Converting between primitives and Strings, or
handling numbers with high precision, is handled through specialized classes and
methods. You will see how autoboxing and unboxing simplify code, and where
caution is required for performance or reliability.

Enums provide a safer and clearer way to work with fixed sets of constants, and
static imports help streamline your code. Working with dates and times in Java has
evolved, with the java.time API offering powerful classes for handling date-only,
time-only, and combined date-time values, as well as supporting operations like

calculating the difference between two dates or formatting output for different
regions. These concepts, along with flexible string formatting, give you the tools to
write code that is not only correct and efficient, but also readable and maintainable.

• Introduce the wrapper classes
• Explain Autoboxing and Unboxing
• Converting String representations of primitive numbers into their primitive

types
• Defining Enumerations
• Using static imports
• Introduce the Date/Time API
• LocalDate / LocalDateTime etc.
• Apply text formatting
• Using System.out.printf

16) Inheritance and Polymorphism

Polymorphism is a central pillar of object-oriented programming, giving you the
flexibility to design systems where different objects can be treated uniformly
through a common interface. By learning how Java applies polymorphism, you gain
the ability to write code that is both reusable and adaptable. You’ll see how
subclassing allows you to create specialized versions of a parent class, each capable
of providing its own implementation of a method. You’ll also examine how casting
between class types works, including the differences between upcasting and
downcasting, and how to use the instanceof operator to maintain type safety. The
lesson also explores how the final keyword helps control inheritance, method
overriding, and variable immutability, providing essential tools for robust Java
programming.

• Write a subclass with a method that overrides a method in the superclass
• Group objects by their common supertype
• Utilize polymorphism
• Cast a supertype reference to a valid subtype reference
• Use the final keyword on methods and classes to prevent overriding

17) Interfaces and Abstract Classes

Understanding how to structure code for flexibility and maintainability is crucial in
Java programming. This lesson explores the core principles behind separating what
an object can do from how it does it. You will see how Java formalizes these
capabilities through interfaces and abstract classes, providing tools to define
contracts and organize code. By examining abstract classes, you’ll learn how partial
blueprints guide subclass development. Interfaces, on the other hand, show how to
declare abilities that many unrelated classes can share. The lesson also covers
advanced interface features like default, static, and private methods, which add new
layers of power and convenience to your designs. Through practical examples, you
will gain insight into polymorphism, multi-interface implementation, type checking,
and the evolving nature of interfaces, empowering you to create robust, adaptable
software.

• Define supertype contracts using abstract classes
• Implement concrete classes based on abstract classes
• Define supertype contracts using interfaces
• Implement concrete classes based on interfaces
• Explain advantage of interfaces over abstract classes
• Explain advantage of abstract classes over interfaces

18) Sealed Classes

Understanding how Java controls the relationships between types is crucial for
building reliable and maintainable software. You will explore interface contracts,
which set the expectations for what a class or interface should deliver, and see how
Java enforces these expectations through inheritance and implementation rules. The
lesson delves into the challenges of controlling which classes can implement or
extend an interface using traditional methods such as final classes and
package-private constructors. Next, you will learn about sealed types, a feature that
allows you to explicitly define and limit which classes are permitted to be part of a
hierarchy. This approach provides greater predictability and clarity in your code by
reducing accidental or unwanted extensions. You will also see how sealed classes
and interfaces work in practice, how to declare permitted subclasses, and how these
constructs compare to final and abstract classes. To help you make informed
decisions in your own projects, you will review the benefits, real-world scenarios,
and limitations of using sealed classes in Java.

• Introduce sealed classes
• The sealed and permits modifier
• Sealed interfaces
• Sealed classes and pattern matching

19) Pattern Matching
You will explore advanced features in Java that streamline type checks and control
flow within your code. Learn how the `instanceof` operator and pattern matching
work together to make type safety more robust and your code more concise.
Discover how modern Java switch statements have evolved to handle a broader
range of types and conditions, including support for null values, exhaustive
matching, and integration with enums, sealed classes, and interfaces. You'll also
work with records and see how pattern matching and type inference can simplify
handling both simple and nested data structures. By mastering these features, you
can write clearer, safer, and more expressive Java programs.

• Pattern Matching in switch statements
• Pattern Matching and sealed classes
• Record Patterns

20) Introduction to Exception Handling

Dealing with unexpected problems is an essential part of programming, and Java
provides clear structures for managing these situations. This lesson explores how
Java identifies, organizes, and handles errors that arise during program execution.
You’ll see how exceptions differ from regular errors, and how Java’s system directs

you to address them through specialized objects and structured code blocks. By
understanding how exceptions are classified and used, you’ll gain the ability to write
software that reacts predictably to problems such as missing files or invalid data.
You’ll also discover how the exception hierarchy allows you to manage both general
and specific error cases, and why Java distinguishes between exceptions you must
handle and those you may safely ignore. With practical examples, this lesson will
strengthen your skills in making robust, reliable, and maintainable Java applications
that can cope with both anticipated and unforeseen issues.

• Introduce the Exception architecture
• Defining a try/catch blocks
• Checked vs Unchecked exceptions

21) Exceptions

In this lesson, you will learn how to create and manage custom exceptions in Java,
making your error handling more specific and effective for your applications. You
will explore how Java exceptions are structured as classes, giving you the ability to
extend and customize them to reflect unique scenarios in your code. The lesson will
guide you through providing meaningful constructors and additional fields in
custom exception classes, enhancing the clarity and usefulness of error messages.
You will also discover strategies for handling resources safely, including the use of
try-with-resources and the finally block, ensuring that resources are always properly
released. Key techniques such as multi-catch, suppressed exception handling, and
improvements in NullPointerException diagnostics will be covered, equipping you
to build more robust and maintainable Java applications. The lesson will conclude
with practical guidance on when to use exceptions and why leveraging standard
exceptions leads to cleaner, more predictable code.

• Defining your own application exceptions
• Automatic closure of resources
• Suppressed exceptions
• Handling multiple exceptions in one catch
• Enhanced try-with-resources
• Helpful NullPointerException(s)

22) Building Java Applications

After writing your source code, the next critical phase in application development
involves several structured steps to transform your code into a working product.
These steps include compiling your code, managing resources, generating
documentation, and running tests, all of which can be labor-intensive if handled
manually. Tools like Maven automate and simplify these processes, making software
development more efficient and organized. Understanding how to use Maven,
including how to set up a project, manage dependencies, and import your project
into popular IDEs like Eclipse and IntelliJ, is essential for modern Java development.
This lesson provides practical guidance on using Maven to streamline your workflow
and create robust, maintainable applications.

• Explain the steps involved in building applications

• Define the build process
• Introduce build scripts
• Explain the standard folder layout
• Resolving project dependencies

23) Introduction to Generics

Generics are a key feature in Java that make code more robust and easier to
maintain. By introducing type parameters, you gain the ability to define classes,
interfaces, and methods that work safely with different data types. This means you
can write code that is both flexible and type-safe, helping you catch errors at
compile time instead of at runtime. Generics are especially useful when working
with collections, such as lists or maps, as they prevent accidental mixing of
unrelated object types and eliminate the need for explicit casting. Through this
lesson, you will see how generics provide safer, cleaner, and more efficient ways to
handle data structures and operations in Java, making your code more reliable and
easier to understand.

• Explain the purpose of generics in Java.
• Identify the risks of using non-generic collections.
• Describe how to define and use generic classes.
• Implement generic methods in Java.
• Distinguish between raw types and parameterized types.
• Apply type parameter naming conventions in generic code.
• Demonstrate the use of bounded types and bounded wildcards.

24) Introducing Lambda Expressions and Functional Interfaces

Functional and object-oriented programming represent two fundamental
approaches to structuring and organizing code in Java. By understanding both, you
can choose the strategy that best fits your coding challenges, whether you need
reliability and predictability or rich data modeling with stateful objects. This lesson
introduces functional interfaces, a cornerstone of functional programming in Java,
and shows how they enable the use of lambda expressions for more concise,
expressive code. You'll learn how these concepts lead to cleaner design, improved
modularity, and greater flexibility. Through practical examples, you'll see how to
implement reusable functions, leverage generic interfaces, and apply method or
constructor references for streamlined code. Along the way, you'll discover how
lambdas differ from traditional anonymous classes and how to use them effectively
for better code clarity and maintainability.

• Identify the core differences between functional and object-oriented
programming.

• Explain the purpose and structure of functional interfaces in Java.
• Demonstrate how to implement functional interfaces with lambda expressions.
• Utilize utility methods that accept functional interfaces as parameters.
• Optimize lambda expressions for clarity and conciseness.
• Use generic functional interfaces for flexible code reuse.

25) Collections

Arrays in Java offer a simple way to group and manage data, but their fixed size
and rigid structure can make code less adaptable and efficient. When dealing with
dynamic or large-scale data management, you need tools that can grow, shrink, and
respond flexibly to changes. The Java Collections Framework was designed for
exactly this purpose. By learning the essential interfaces and their implementations,
you gain the ability to organize, manipulate, and access your data in ways that are
both powerful and efficient. Understanding how to use these interfaces, as well as
the new features introduced in recent Java versions, will help you write cleaner,
more maintainable code. This lesson will guide you through the most important
concepts, tools, and best practices for working with collections, so you can
confidently manage data in modern Java applications.

• Provide an overview of the Collection API
• Review the different collection implementations (Set, List and Queue)
• Explore how generics are used with collections
• Examine iterators for working with collections
• Sequenced Collections

26) Using Collections

Java’s Collection Framework offers a versatile set of tools for managing and
manipulating groups of objects. You will explore the distinct interfaces that shape
how elements are stored, accessed, and modified, from ensuring uniqueness in sets
to managing key-value associations in maps. By learning about advanced interfaces
such as SortedSet and NavigableSet, you’ll see how ordered data can be efficiently
retrieved and maintained. Sorting is a key theme, with a focus on both natural and
custom orderings using Comparable and Comparator. Modern Java features, such
as lambdas and method references, enable functional programming approaches to
collections, making data processing concise and expressive. You’ll also discover
how to create immutable and thread-safe collections for robust application design,
and why thoughtful selection of collection types and implementations matters for
performance. Finally, practical considerations like setting initial capacity will be
highlighted to help you write efficient, scalable Java programs.

• Collection Sorting
• Comparators
• Using the Right Collection
• Lambda expressions in Collections
• Sequenced Sets

27) Streams

Collections are foundational to how Java applications handle and process data.
When working with lists or other collection types, performing operations such as
searching, grouping, and aggregating data becomes a regular task. Unlike SQL,
which provides a straightforward, declarative syntax for these operations, Java’s
traditional approach often involves explicit, repetitive coding to filter and process
collections. The Stream API transforms this experience, offering a set of tools to
express complex data manipulations in a clear and concise way. By learning how to

use streams, you can write more readable, maintainable code that takes full
advantage of Java’s capabilities, including parallel processing. This lesson equips
you with the concepts and practical skills needed to filter, map, and collect data
using streams, and shows how to harness advanced features like optional values,
numeric streams, and stream sources. You will see how these tools can handle both
simple and large-scale data processing tasks efficiently.

• Understanding the problem with collections in Java
• Thinking of program solutions in a declarative way
• Use the Stream API to process collections of data
• Understand the difference between intermediate and terminal stream

operations
• Filtering elements from a Stream
• Finding element(s) within a Stream
• Collecting the elements from a Stream into a List

28) Collectors

Collectors are essential tools for anyone working with Java Streams. You will learn
how collectors help transform, organize, and analyze data as it flows through a
stream. This lesson introduces the core collector operations: accumulating elements
into collections, grouping and partitioning data based on properties or conditions,
and summarizing information to extract key insights. Real-world examples, such as
categorizing flight data, will illustrate each concept in action. You will also explore
how to combine Stream operations with collectors for tasks like creating lists, sets,
and maps, producing formatted strings, and performing summary calculations. By
understanding and applying collectors, you gain the ability to manage complex data
with concise, efficient code.

• Using different ways to collect the items from a Stream
• Grouping elements within a stream
• Gathering statistics about numeric property of elements in a stream

Additional Topic: Time Permitting

These topics will be included in your course materials but may or may not be
presented during the live class depending on the pace of the course and attendee
skill level and participation.

1) Introduction to Annotations

Annotations in Java are a powerful feature that allow you to add meaningful
metadata directly to your code. These annotations act as instructions for the
compiler, tools, or frameworks, but are not part of your core business logic. By
learning how to use annotations, you gain the ability to influence how your code is
processed, validated, and executed—often making configuration simpler and more
intuitive. You'll encounter standard annotations provided by Java, as well as those
created by various frameworks and libraries. Creating your own custom annotations
lets you define reusable patterns or rules for your projects. Understanding where
and how annotations are retained and applied is essential, particularly when

integrating with tools that use reflection to inspect or modify behavior at runtime.
This lesson explores these concepts and demonstrates how annotations enhance
code organization, maintainability, and functionality, especially in enterprise and
testing environments.

• Discuss how annotations work in Java
• Understand what is required to work with Java’s annotations
• Use annotations
• Other technologies that are using annotations

2) Java Data Access JDBC API

JDBC is a foundational technology for Java applications that interact with
databases. By using JDBC, you can connect your Java programs to a wide range of
data sources, not just traditional relational database management systems. This
lesson guides you through the essential concepts of JDBC, from understanding its
standard interfaces and the role of database drivers, to writing SQL commands that
retrieve and modify data. You will learn how to establish database connections, use
Statement and PreparedStatement objects for executing queries, and process the
results with ResultSet. Additionally, you will see how to perform data modifications
and control transactions to maintain data integrity. Mapping between SQL and Java
data types is also covered, ensuring you can work confidently with different kinds of
information. Through practical examples and clear explanations, you will gain the
skills needed to integrate robust database functionality into your Java applications

• Connecting to a database using JDBC
• Executing a statement against a database that returns a ResultSet
• Setting up and working with PreparedStatements
• Extracting multiple rows of data from a ResultSet
• Inserting, updating and deleting rows in a table

Classroom Live Labs
• Lab: Exploring MemoryViewer
• Lab: The SwingSet demo
• Lab: Compact Source files
• Lab: Create a Simple Class
• Lab: Create a Class with Methods
• Lab: Define and use a New Java class
• Lab: Define and use Another Java Class (optional)
• Lab: Looping (optional)
• Lab: Language Statements
• Lab: Switch Expressions
• Lab: Fun with Strings
• Lab: Using StringBuffers and StringBuilders
• Lab: Field Test
• Lab: Coffee Order
• Lab: Creating Subclasses

• Lab: Creating an Array
• Lab: Records
• Lab: Running Simple Java applications
• Lab: Enumerations
• Lab: TextBlocks
• Lab: Salaries - Polymorphism
• Lab: Interfaces
• Lab: Sealed Classes
• Lab: Pattern Matching
• Lab: Exceptions
• Lab: Exceptional
• Lab: Helpful Nullpointers (optional)
• Lab: Working with Generics
• Lab: Lambdas
• Lab: Create a simple Game using Collections
• Lab: Using Collections
• Lab: Working with Streams
• Lab: Collecting

Additional Topics:
• Lab: Intro to JDBC

CORE JAVA 25 PROGRAMMING
DEVELOPER'S WORKSHOP (TT2100)
Course Code: 101020

VIRTUAL CLASSROOM LIVE $2,695 USD 5 Day

Apr 6 - 10, 2026 | 10:00 AM - 6:00 PM EDT

Jul 13 - 17, 2026 | 10:00 AM - 6:00 PM EDT

CORE JAVA 25 PROGRAMMING
DEVELOPER'S WORKSHOP (TT2100)
Course Code: 101020

PRIVATE GROUP TRAINING 5 Day

Visit us at www.globalknowledge.com or call us at 1-866-716-6688.

Date created: 2/9/2026 6:32:24 AM
Copyright © 2026 Global Knowledge Training LLC. All Rights Reserved.

