

FUNDAMENTALS OF SOFTWARE
TESTING
Course Code: 2515

Learn the fundamental techniques and approaches to software testing and
better understand what to test, how to test it, and in what contexts certain
practices make sense.

Testing is a critical role in software development that requires special skills and
knowledge that are not commonly taught to software developers, business analysts
and project managers. This often results in insufficient time and resources being
allocated for this important function, and quality suffers—as do the users of the
software. Equally important is the need to measure quality quickly and efficiently
because limitations in resources and schedules are realities that aren’t going away.
Enhancing the professionalism of everyone involved in software testing will make
them effective contributors to teams that deliver high, proven-quality software.

Fundamentals of Software Testing provides an eye-opening view into this
challenging task based on several sources of industry best practice. It provides a
complete picture of the testing process, how it fits into the development life cycle,
how to properly scope and prioritize testing activities, and what techniques to use
for optimal results. Students come away with many ideas that they can apply in
their own projects to improve the effectiveness and efficiency of testing efforts.

What You'll Learn
• Develop a model of the application
• Use their model to determine test coverage
• Identify test oracles for the application
• Create test cases based on the oracles
• Run their tests against the live application
• A deep-dive into the Universal Testing Method
• Look at testing phases, testing approaches, non-functional testing, and testing

for different platforms
• An introduction to automation testing and behavior-driven development

Who Needs to Attend
• Testers of all types and levels
• Other disciplines who perform their own testing or are involved in testing

• Quality Assurance Professionals
• Test Management
• QA Managers
• QA Directors
• Software Engineers
• Business Analysts
• Project Managers
• IT Specialists (Security, Capacity Management, Networking…)
• Business Stakeholders
• Outsourcer Staff (Buyers and Suppliers)
• Application Development Managers

FUNDAMENTALS OF SOFTWARE
TESTING
Course Code: 2515

CLASSROOM LIVE $1,760 CAD 3 Day

Classroom Live Outline

Part 1: Introduction and Overview
Establishes a foundation for the course, provides a workable definition of software
quality and shows how testing fits into the overall quality process.

Part 2: What to Test and How to Test it — The Universal Testing Method
Testers follow the same basic process that scientists use; we follow the principles of
experimentation and measurement. In this course, we map your testing method
back to those principles and show how, at each step in your testing, you’re making
complex decisions about what to test and how to test it. Utilizing a combination of
skills, tactics, practices, and tools - this section helps build a base that testers in any
context (of any skill level) can apply to solve testing problems.

1. Model the Testing Space. Compose, describe and work with visual models of the
software to identify relevant dimensions, variables, and dynamics so you can
develop an effective test strategy.

2. Determine Test Coverage. Understand a variety of common measures of test
coverage and choose the most appropriate ones for each project; determine
the scope of testing; establish a structure to track test coverage

3. Determine Test Oracles. Identify the sources of truth to determine whether the
application has passed or failed tests; review common formal and heuristic
oracles

4. Determine Test Procedures. Define what test procedures and test cases are;
identify common test procedure types; learn how to document test procedures
in a practical, efficient manner

5. Configure the Test System. See how to ensure you have everything needed to
support testing; discuss common challenges to test configuration; consider
test lab requirements and realities

6. Operate the Test System. Learn how to manage tester contact with the

application under test (AUT); discuss different methods of interaction with the
system to address different testing objectives; identify common artifacts and
practices related to test operation

7. Observe the Test System. Learn what empirical data to capture about the
application under test and how to preserve testing interactions for review and
reproducibility; consider common tools used to assist with test observation;
identify common problems and human tendencies related to observation

8. Evaluate Test Results. Discuss possibilities and probabilities related to test
results (not every test failure is a bug!); identify typical test result evaluation
tasks; consider performance test results interpretation; learn key factors
related to defect communications

9. Report Test Results. Learn how to make credible, professional reports of testing
results and testing progress that address the varied needs of your target
audiences; identify guiding principles for report design; review best practices
and examples for defect reporting, progress status reporting, and quality
statistics reporting

Part 3: Test Case Strategies
The heart of good testing is coming up with good test cases. In this section, we will
define what makes test cases “good”, and discuss these strategies for identifying
test cases in specific contexts:

1. White Box strategies
2. Black Box strategies
3. Input and data-based strategies
4. User interface oriented strategies
5. Business Process flow strategies
6. Strategies based on your personal and organizational experiences

Part 4: Common Phases of Testing
Different testing activities take place as the software progresses through its life
cycle. (Agile testers perform these same testing activities, even though they are not
project phases.) This section explains the common phases of software testing,
including the purpose of each, who normally performs it, and the typical types of
tests that are done.
Test phases or types discussed:

1. Unit and Software
2. Integration
3. System and System Integration
4. Product Readiness
5. Regression
6. User Acceptance

Part 5: Approaches to Testing
Different approaches to testing are used to address different testing objectives and
different project conditions. Some approaches are more formal, lengthy, traceable,
and reproducible. Others are more free-form, quicker, less traceable, and less
reproducible. The range of such approaches forms a continuum from which testers

select the optimal combination for a given project. The best selection of approaches
addresses the needs for both positive and negative testing.

1. The Testing Approach Continuum
2. Scripted Testing
3. Freestyle Testing
4. Middle-Ground (Charters, Checklists, Scenarios)

Part 6: Non-Functional Testing
Without question, functional testing is a must-have for software quality. However,
there’s more to the picture than that. This section describes several key types of
non-functional testing and identifies, what their scope is, and what techniques or
best practices apply.

1. Performance
2. Usability
3. Accessibility
4. Security
5. Portability
6. Localization

Part 7: Platform Specialization
Software is not just on the desktop—it runs on numerous platforms, and it all needs
to be tested. This section takes multiple platforms into consideration and identifies
each platform’s unique challenges, and the best testing approaches for each given
platform.

1. Web-Based
2. Mobile
3. SOA (Service-Oriented Architecture)
4. Telephony and Voice
5. DW/BI (Data Warehouse and Business Intelligence)
6. COTS/MOTS - Package Implementations (COTS)

Part 8: Test Automation — Bonus Section
There have been many organizations that have set out to implement automation
testing in their projects, and many of them have failed. This section identifies the
different types of tools and practices that fall into the “automation” category and
helps set realistic expectations and goals for automated testing. Learn how to
optimize your automation testing investment and plan properly for long-term
success. This is a bonus section that is discussed as time permits.

1. Automated Test Tools
2. System Monitor Tools
3. File/Database Comparison Tools
4. Static Analysis Tools

Part 9: Behavior Driven Development (BDD) & Test Driven Development (TDD) — Bonus
Section
BDD and TDD are related approaches to software development that came out of
the Agile movement and have proven to have a significant positive impact on

software quality. This section provides an introduction to the concepts so testers
can be prepared to adopt them together with developers and other project
members using iterative development methods. This is a bonus section that is
discussed as time permits.

1. Test-Driven Development activities
2. Behavior-Driven Development activities
3. Tools for Different Languages

Part 10: Managing Testing Projects
Whether you lead a team of testers or work as the lone tester on a project,
effectively managing the testing work is key to your ability to successfully test the
software on time with the resources at hand. In this section, we will address the
basics of managing your work in a way that is relevant to individual contributors
and lead leads alike.

1. Planning for Testing (Universal Testing Method Steps 1-4)
2. Requirements Traceability
3. Test Resource Needs
4. Testing Risks and Issues
5. Testing Entry and Exit Criteria
6. Measuring Testing Progress

FUNDAMENTALS OF SOFTWARE
TESTING
Course Code: 2515

VIRTUAL CLASSROOM LIVE $1,760 CAD 3 Day

Virtual Classroom Live Outline

Part 1: Introduction and Overview
Establishes a foundation for the course, provides a workable definition of software
quality and shows how testing fits into the overall quality process.

Part 2: What to Test and How to Test it — The Universal Testing Method
Testers follow the same basic process that scientists use; we follow the principles of
experimentation and measurement. In this course, we map your testing method
back to those principles and show how, at each step in your testing, you’re making
complex decisions about what to test and how to test it. Utilizing a combination of
skills, tactics, practices, and tools - this section helps build a base that testers in any
context (of any skill level) can apply to solve testing problems.

1. Model the Testing Space. Compose, describe and work with visual models of the
software to identify relevant dimensions, variables, and dynamics so you can
develop an effective test strategy.

2. Determine Test Coverage. Understand a variety of common measures of test
coverage and choose the most appropriate ones for each project; determine
the scope of testing; establish a structure to track test coverage

3. Determine Test Oracles. Identify the sources of truth to determine whether the
application has passed or failed tests; review common formal and heuristic
oracles

4. Determine Test Procedures. Define what test procedures and test cases are;
identify common test procedure types; learn how to document test procedures
in a practical, efficient manner

5. Configure the Test System. See how to ensure you have everything needed to
support testing; discuss common challenges to test configuration; consider
test lab requirements and realities

6. Operate the Test System. Learn how to manage tester contact with the

application under test (AUT); discuss different methods of interaction with the
system to address different testing objectives; identify common artifacts and
practices related to test operation

7. Observe the Test System. Learn what empirical data to capture about the
application under test and how to preserve testing interactions for review and
reproducibility; consider common tools used to assist with test observation;
identify common problems and human tendencies related to observation

8. Evaluate Test Results. Discuss possibilities and probabilities related to test
results (not every test failure is a bug!); identify typical test result evaluation
tasks; consider performance test results interpretation; learn key factors
related to defect communications

9. Report Test Results. Learn how to make credible, professional reports of testing
results and testing progress that address the varied needs of your target
audiences; identify guiding principles for report design; review best practices
and examples for defect reporting, progress status reporting, and quality
statistics reporting

Part 3: Test Case Strategies
The heart of good testing is coming up with good test cases. In this section, we will
define what makes test cases “good”, and discuss these strategies for identifying
test cases in specific contexts:

1. White Box strategies
2. Black Box strategies
3. Input and data-based strategies
4. User interface oriented strategies
5. Business Process flow strategies
6. Strategies based on your personal and organizational experiences

Part 4: Common Phases of Testing
Different testing activities take place as the software progresses through its life
cycle. (Agile testers perform these same testing activities, even though they are not
project phases.) This section explains the common phases of software testing,
including the purpose of each, who normally performs it, and the typical types of
tests that are done.
Test phases or types discussed:

1. Unit and Software
2. Integration
3. System and System Integration
4. Product Readiness
5. Regression
6. User Acceptance

Part 5: Approaches to Testing
Different approaches to testing are used to address different testing objectives and
different project conditions. Some approaches are more formal, lengthy, traceable,
and reproducible. Others are more free-form, quicker, less traceable, and less
reproducible. The range of such approaches forms a continuum from which testers

select the optimal combination for a given project. The best selection of approaches
addresses the needs for both positive and negative testing.

1. The Testing Approach Continuum
2. Scripted Testing
3. Freestyle Testing
4. Middle-Ground (Charters, Checklists, Scenarios)

Part 6: Non-Functional Testing
Without question, functional testing is a must-have for software quality. However,
there’s more to the picture than that. This section describes several key types of
non-functional testing and identifies, what their scope is, and what techniques or
best practices apply.

1. Performance
2. Usability
3. Accessibility
4. Security
5. Portability
6. Localization

Part 7: Platform Specialization
Software is not just on the desktop—it runs on numerous platforms, and it all needs
to be tested. This section takes multiple platforms into consideration and identifies
each platform’s unique challenges, and the best testing approaches for each given
platform.

1. Web-Based
2. Mobile
3. SOA (Service-Oriented Architecture)
4. Telephony and Voice
5. DW/BI (Data Warehouse and Business Intelligence)
6. COTS/MOTS - Package Implementations (COTS)

Part 8: Test Automation — Bonus Section
There have been many organizations that have set out to implement automation
testing in their projects, and many of them have failed. This section identifies the
different types of tools and practices that fall into the “automation” category and
helps set realistic expectations and goals for automated testing. Learn how to
optimize your automation testing investment and plan properly for long-term
success. This is a bonus section that is discussed as time permits.

1. Automated Test Tools
2. System Monitor Tools
3. File/Database Comparison Tools
4. Static Analysis Tools

Part 9: Behavior Driven Development (BDD) & Test Driven Development (TDD) — Bonus
Section
BDD and TDD are related approaches to software development that came out of
the Agile movement and have proven to have a significant positive impact on

software quality. This section provides an introduction to the concepts so testers
can be prepared to adopt them together with developers and other project
members using iterative development methods. This is a bonus section that is
discussed as time permits.

1. Test-Driven Development activities
2. Behavior-Driven Development activities
3. Tools for Different Languages

Part 10: Managing Testing Projects
Whether you lead a team of testers or work as the lone tester on a project,
effectively managing the testing work is key to your ability to successfully test the
software on time with the resources at hand. In this section, we will address the
basics of managing your work in a way that is relevant to individual contributors
and lead leads alike.

1. Planning for Testing (Universal Testing Method Steps 1-4)
2. Requirements Traceability
3. Test Resource Needs
4. Testing Risks and Issues
5. Testing Entry and Exit Criteria
6. Measuring Testing Progress

May 19 - 21, 2025 | 12:00 - 4:30 PM EDT

Jun 16 - 18, 2025 | 12:00 - 4:30 PM EDT

Jul 21 - 23, 2025 | 12:00 - 4:30 PM EDT

Aug 20 - 22, 2025 | 12:00 - 4:30 PM EDT

Sep 15 - 17, 2025 | 12:00 - 4:30 PM EDT

Oct 20 - 22, 2025 | 12:00 - 4:30 PM EDT

Nov 17 - 19, 2025 | 12:00 - 4:30 PM EST

Dec 17 - 19, 2025 | 12:00 - 4:30 PM EST

FUNDAMENTALS OF SOFTWARE
TESTING
Course Code: 2515

PRIVATE GROUP TRAINING 2 Day

FUNDAMENTALS OF SOFTWARE
TESTING
Course Code: 2515

PRIVATE GROUP TRAINING 3 Day

Visit us at www.globalknowledge.com or call us at 1-866-716-6688.

Date created: 5/9/2025 1:36:34 AM
Copyright © 2025 Global Knowledge Training LLC. All Rights Reserved.

